In Vitro Model of Stromal and Epithelial Immortalized Endometriotic Cells

Mariarosaria Boccellino,1 Lucio Quagliuolo,1 Annarita Verde,1 Raffaele La Porta,1 Stefania Crispì,2 Maria Teresa Piccolo,2 Antonio Vitiello,1 Alfonso Baldi,1,3* and Pietro Giulio Signorile3*

1Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
2Gene Expression & Human Molecular Genetics Laboratory, Institute of Genetics and Biophysics, CNR, Naples, Italy
3Fondazione Italiana Endometriosi, Rome, Italy

ABSTRACT

Endometriosis is a relatively common chronic gynecologic disorder that usually presents with chronic pelvic pain or infertility. It results from implantation of endometrial tissue outside the uterine cavity. Despite its frequency and its impact on quality of life, the understanding of pathogenesis of endometriosis remains incomplete and its treatment remains controversial. In this work, we established a suitable in vitro model system of immortalized human endometriotic cell line taking advantage of the human telomerase reverse transcriptase. The results demonstrate that these cells retain the natural characteristics of endometrial cells in term of phenotype and of functional expression of estrogen and progesterone receptors, without chromosomal abnormalities. In conclusion, these cells are potentially useful as an experimental model to investigate endometriosis biology. J. Cell. Biochem. 9999: 1–10, 2012.

KEY WORDS: ENDOMETRIOSIS; HTERT RETROVIRUS; ESTROGEN RECEPTORS; STEROID HORMONES

Endometriosis is defined as the proliferation of tissue similar to endometrium but residing outside of the uterine cavity. It is one of the most common gynecological diseases, often requiring surgical treatment (Bulun, 2009). The disease affects up to 10% of all reproductive-aged women and the prevalence rises to 20–50% in infertile women (Rapkin et al., 2000; Taylor et al., 2002; Baldi et al., 2008).

Endometriotic lesions are primarily located on the pelvic peritoneum and ovaries but can also be found in the pericardium, pleura, lung parenchyma, and even in the brain (Giudice et al., 1998; Laschke and Menger, 2007; Signorile et al., 2009). Implants can result in substantial morbidity, including pelvic adhesions and pain, allergies, fatigue, bowel problems, and infertility, often requiring extensive medical and surgical treatments (Behera et al., 2006; Redwine, 2006). Hence, this disease is costly and both physically and psychologically debilitating. The etiology of the disease is still unknown, being retrograde menstruation, coelomic metaplasia or both the most recognized hypotheses (Starzinski-Powitz et al., 2001; Gazvani and Templeton, 2002; Slater et al., 2005). A different theory of special interest is based on a defect in embryogenesis (Signorile and Baldi, 2010). To support the latter theory, our research group has recently shown the presence of ectopic endometrium in a significant number of human female fetuses (Signorile et al., 2009, 2010; Signorile et al., 2011). Although the exact molecular mechanisms underlying this phenomenon remains to be clarified, data from an animal model of endometriosis created in our laboratory suggests alterations in the fine tuning of female genital structures organogenesis due to abnormal activation of the estrogen morphogenetic pathway during the fetal life (Signorile et al., 2010).

However, apart from the origin, there is a general agreement that endometriosis is associated with a local inflammatory response, and that vascularization at the site of invasion plays a decisive role in the pathogenesis of the disease (Haskill et al., 1988; Starzinski-Powitz et al., 2001; Gazvani and Templeton, 2002ab; Slater et al., 2005). Although it is well accepted that endometriotic lesions are composed of stromal and epithelial glandular cells, little is known about the development and characteristics of the cell types contributing to the pathogenesis of endometriosis. Nevertheless, studies on the
molecular, cellular, and pathophysiological parameters in endometriosis are limited by scarcity of in vitro model systems such as endometriotic cell lines. In particular, the lack of a stable cellular model renders the study in this area difficult, because of the extremely short life span of primary cultured endometrial cells in vitro.

One major mechanism that accounts for the limited life span of primary cultured cells is telomere-based replicative senescence. Telomeres are the specialized nucleo-protein structures, which are located at the ends of eukaryotic chromosomes. Without complete replication of telomeric DNA, the telomeres slowly shorten until cell division is arrested. Telomerase is a ribonucleoprotein complex that extends and maintains the telomeres. Activation of this enzyme is, therefore, required for cells to overcome replicative senescence and obtain the ability to divide without limit (Counter et al., 1992).

The aim of the present study was to establish a new in vitro model system of immortalized human endometriotic cell line taking advantage of the human telomerase reverse transcriptase (hTERT). Our results demonstrate that these cells do not have transformed phenotypes and retain the natural characteristics of endometrial cells without chromosomal abnormalities, and thus are potentially useful as an experimental model to investigate endometriosis biology.

MATERIALS AND METHODS

ISOLATION AND CULTURE OF HUMAN ENDOMETRIAL STROMAL AND EPITHELIAL CELLS

Deep endometriotic tissue samples were obtained, by laparoscopy, from patients with histologically confirmed endometriosis during the proliferative phase of the menstrual cycle. Isolation and culture of human endometrial stromal cells and endometrial epithelial cells were made as previously described (Osuga et al., 1995; Koga et al., 2001). Fresh endometrial biopsy specimens collected in sterile medium were rinsed to remove blood cells. The tissues were minced into small pieces and incubated in phenol-red free DMEM/F-12 containing type I collagenase (0.25%) and deoxyribonuclease I (15 U/ml) for 120 min at 37°C. The resultant dispersed endometrial cells were separated by filtration through a 40-μm nylon cell strainer. Endometrial epithelial cells were retained by the strainer, whereas dispersed stromal cells passed through the strainer into filtrate. Epithelial cells in the filtrate were collected by centrifugation and resuspended in DMEM/F-12 containing 10% heat-inactivated FBS, 100 U/ml of penicillin, 0.1 mg/ml of streptomycin, and 0.25 μg/ml amphotericin B. Endometrial stromal cells were seeded in a 100-mm culture plate and kept at 37°C in a humidified 5% CO2-95% air atmosphere. Endometrial epithelial cells were collected by back-washing the strainer with complete DMEM/F-12 medium, and then, seeded onto a 100-mm plate. The non-attached epithelial cells were recovered and cultured in the complete medium in a 100-mm culture plate. The purity of stromal and epithelial cells was confirmed immunocytochemically. Finally, the cells were grown to confluence and, then, were seeded onto six-well dishes for subsequent immortalization.

IMMUNOCYTOCHEMISTRY

Endometrial stromal and epithelial cells were cultured on glass slides for 24 h, fixed with 70% ethanol rehydrated through a graded alcohol series and washed in phosphate-buffered saline (PBS). PBS was used for all subsequent washes and for antiserum dilution. Sections were quenched sequentially in 3% hydrogen peroxide in aqueous solution and blocked with PBS-6% non-fat dry milk (BioRad, Hercules, CA) for 1 h at room temperature. Slides were then incubated at 4°C overnight at 1:100 dilution with the following antibodies: mouse monoclonal antibody against cytokeratin 7 (clone OV-TL 12/30) and CD10 (clone M7308) (Dako Laboratories, Carpinteria, CA). After three washes in PBS to remove the excess of antiserum, the slides were incubated with diluted anti-mouse biotinylated antibodies (Vector Laboratories, Burlingame, CA) at 1:200 dilution in PBS-3% non-fat dry milk (BioRad) for 1 h. All the slides were then processed by the ABC method (Vector Laboratories) for 30 min at room temperature. Diaminobenzidine (Vector Laboratories) was used as the final chromogen and hematoxylin was used as the nuclear counterstaining. Negative controls for each tissue section were prepared by leaving out the primary antiserum. Positive controls constituted of tumor tissues expressing either cytokeratin or vimentin, were run at the same time. All samples were processed under the same conditions.

RETROVIRAL VECTORS AND INFECTION

Endometrial stromal and epithelial cells were sub-cultured onto six-well dishes and allowed to recover for 4 days. Cells were then, infected with the amphotropic hTERT retroviral vectors supernatant in the presence of 8 μg/ml polybrene (first infection). Six to eight hours later, the viral supernatant from the first infection was removed and the cells were re-infected with fresh retrovirus supernatant with polybrene (second infection). Eighteen hours after incubation, the viral supernatant was removed and the appropriate complete growth medium was added to the cells and incubated at 37°C with 5% CO2. Seventy-two hours after incubation, cells were cultured with Puromycin to select stable cell-line generation. Ten to fifteen days after selection, the clones were selected and isolated for expansion and screened for positive ones.

KARYOTYPING

Cells were harvested when 50–70% confluent with actively dividing cells present. Colcemid was added to a final concentration of 0.04 mg/ml at least 2 h before harvesting. Cells were trypsinized and harvested to produce G-banded metaphase preparations. Karyotype analysis and documentation were performed by a computerized acquisition and analysis system (Applied Spectral Imaging). A minimum of 20 cells were analyzed from each immortalized and parental primary cell culture for chromosomal clonal structural or numerical abnormalities.

REVERSE TRANSCRIPTASE-POLYMERASE CHAIN REACTION (RT-PCR)

Total RNAs were extracted by using Trizol reagent (Invitrogen), strictly according to the manufacturer’s instructions. The purity and quantity of total RNA were determined by Experion analysis (BioRad). For each sample, reverse-transcription reaction was performed using High Capacity cDNA Reverse Transcription Kits.
(Applied Biosystems) following manufacturer's instructions and starting from 1 µg total RNA. First-strand cDNA was synthesized with the use of 1 µg total RNA. The total product cDNA (20 µl) was diluted with 60 µl H₂O, then 4 µl were used for the PCR reaction using the AmpliTaq Gold DNA Polymerase (Applied Biosystems). The RT-PCR negative control and a PCR negative control without cDNA were also used. Specific primers were used for each receptor analyzed: Er-alpha Forward 5'-GCAGAGCTGGTTCA-3'; Reverse 5'-GGCTTTGTTACTCATGTGCC-3'; ER-beta Forward, 5'-GGCAACTCTTCAGGGTTTCGAG-3'; Reverse, 5'-ACTGAGACTGTGGTCTGGGAG-3'; PGR Forward 5'-TTAC- CATGTTGGCGATCCACAG-3'; Reverse, 5'-ACCATCTGTGGCAGA-TATCTTGGG-3'. All the primers were compared to the human genome to exclude any significant homology with BLAST program (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Amplicons were visualized on a 1% agarose.

**MTT ASSAY**

MTT assay is based on the conversion of the yellow tetrazolium salt to purple formazan crystals by metabolically active cells and provides a quantitative estimate of viable cells. Briefly, 1.0 × 10⁴ cells were incubated in triplicate in a 96-well plate in the presence or absence of the indicated test samples in a final volume of 0.2 ml for various lengths of time at 37°C. Thereafter, 20 µl MTT solution (5 mg/ml in PBS) was then added to each well. After a 3-h incubation at 37°C, 100% (v/v) of a solubilization solution (10% 1 N HCl in 2-propanol) was added to each well. Finally, the plates were shaken and the optical density at 570 nm was measured using a multi-well plate reader (Microplate Reader; BioRad). Percent cell viability was calculated as cell viability of the experimental samples/cell viability of the control samples × 100. At least three independent experiments were performed.

**RESULTS**

**ISOLATION AND CHARACTERIZATION OF HUMAN ENDOMETRIOSIC CELLS**

We have successfully established epithelial and stromal cell monolayer cultures from endometriotic biopsies. The samples were minced and digested in a collagenase solution, then the resultant dispersed endometrial cells were separated by filtration in epithelial cells that retained by the strainer, and in stromal cells that passed through the strainer.

Morphologically, the epithelial cells exhibited a typical honeycomb-like morphology, while the stromal cells exhibited the typical fibroblastoid spindle-shape morphology (Fig. 1A,B). Next, we

---

Fig. 1. The upper panel shows micrographs representative of cell shape. A: Epithelial cells; (B) stromal cells. Original magnification ×400. The bottom panel shows immunohistochemical analysis. C: Epithelial cells were positive for cytokeratin 7; (D) stromal cells were positive for CD10. Original magnification ×400.
verified the epithelial and stromal origin by immunocytochemistry. Cytokeratin 7 is a well-established marker of the gynecological tract (Wang et al., 2001), while CD10 is expressed in the stromal cells of endometriosis (Groisman and Meir, 2003). As shown in Figure 1C,D, epithelial cells expressed cytokeratin 7 while stromal cells were positive for CD10.

IMMORTALIZATION OF HUMAN ENDOMETRIAL CELLS: RETROVIRAL TRANSFECTION OF hTERT

To attempt immortalization, we plated the cells in a six-well plate 24 h before infection with the density around 30–40% confluence and, then, we exposed to retrovirus supernatant hTERT in the presence of 8 μg/ml polybrene. Polybrene is a polycation that neutralizes charge interactions to increase binding between the pseudoviral capsid and the cellular membrane. The microscopic observation revealed a normal cell growth, in fact, 24 h after infection, both the epithelial cells and the stromal had a confluence of about 80% (Fig. 2). This suggests that the infection has not caused any damage cellular activity. For both cell lines, the comparison between primary controls and their immortalized model did not show specific abnormalities in cell morphology, as shown in Figure 2.

Then, we proceeded to the selection with puromycin. The selection period lasted 15 days, having the cells daily observed by optical microscopy. The non-transformed parent cells died within 72 h after puromycin addition. Under phase-contrast microscopy, at the sixth day of selection, the transformed endometriotic cells went through a crisis and most of them died (Fig. 3). Another observation, performed at the end of the selection period, showed a resumption of growth of immortalized cells for both lines (Fig. 4). In particular, the immortalized cell lines (epithelial and stromal) showed a recovery of cell growth, mainly localized around a few clones (Fig. 4). This indicates the successful immortalization of proliferating clones that are resistant to puromycin. These cells were amplified for several generations resulting in the two cell lines of interest that have been subjected to further characterization.

RT-PCR DETECTION OF hTERT EXPRESSION

We have experimentally confirmed the successful immortalization by RT-PCR analysis for the expression of telomerase gene. hTERT mRNAs were detected in cultured epithelial and stromal cells from both transformed endometriotic cells and non-transformed parental cells. Indeed, as shown in Figure 5, elevated hTERT
transcript levels were detected in the immortalized lines but not in their controls.

CHARACTERIZATION OF HUMAN IMMORTALIZED ENDOMETRIAL CELLS

Morphology. In order to verify that immortalization did not result in any kind of cellular alterations, we undertook a cytogenetic and morphological characterization. Under phase contrast microscopy, the epithelial cells retained their typical morphology in the honeycomb, while in the stromal cells their characteristic elongated morphology as can be seen in Figure 6A-B.

Immunocytochemistry. Immunocytochemical markers for the characterization of the cytoskeleton showed a profile consistent with that obtained for the primary cell lines. As shown in

Fig. 3. Micrographs representative of cell growth at the sixth day of selection of epithelial cells (A, C, and E) and stromal cells (B, D, and F). A and B are primary controls; (C and D) primary controls in selection; (E and F) immortalized model in selection. Original magnification ×100.
Figure 6C,D, the immortalized epithelial cells are positive for cytokeratin 7 and negative for CD10, while the immortalized stromal cells are positive for CD10 and negative for cytokeratin 7.

Karyotype. To investigate the effect of immortalization on cell karyotypes, the cytogenetic analysis was performed using standard G-banding analysis. This method allowed a homogeneous staining of all chromosomes, showing their size and morphology. A minimum of 20 metaphases per cell line immortalized and their primary controls were examined. The results obtained from either parental or immortalized cell lines revealed no clonal structural or numerical chromosome abnormalities (data not shown).

RT-PCR detection of estrogen and progesteron receptors. We next examined whether the line immortalized (epithelial and stromal) maintained the typical endometrial receptors. In particular,
α, β estrogen, and progesterone receptors were detected in cultured cells by RT-PCR. The results shown in Figure 7 indicate that cells presented both estrogen receptors, although the β receptors are expressed more than α. Moreover, in both lines the transcript for progesterone was detected. All GAPDH amplification revealed the 240-bp fragment corresponding to the length of the cDNA, but no 354-bp products representing genomic DNA contamination were detected. PCR controls, which did not include cDNA in the reaction, revealed no amplification products.

Hormone effects on primary and immortalized cells. Then, we examined the responsivity of cells to two-steroid hormones. Primary and immortalized cells, both epithelial and stromal, were incubated in media with 5% charcoal-treated fetal calf serum for 48 h and, then, treated with 17 β-estradiol (E2) or 17 α-ethynyl estradiol at 10 nM for different time periods. Cell proliferation was examined by MTT assay. We first examined epithelial lines. As shown in Figure 8, the immortalized cells were more responsive to both hormones compared with their primary control. Indeed, treatment of immortalized lines for 48 h with E2 or 17 α-ethynyl estradiol resulted in twofold increases in cell proliferation, which was significantly higher than that observed with the primary lines. In the stromal lines, the response was lower in immortalized cells and was slower in the primary. In fact, the treatment for 48 h with both hormones produced a proliferation increase of 1.5-fold than control. These results indicate that the cellular model obtained retains the functional characteristics.

DISCUSSION

In the present study, we established a stable in vitro culture system of endometriotic cells that will benefit the study of endometriosis biology and carcinogenesis. In fact, primary endometrial epithelial
cells fall into senescence within 2 weeks when cultured on plastic dishes, and more complete understanding of endometriosis pathogenesis has been delayed because of a lack of a suitable in vitro culture model. We obtained primary cultures from women endometriotic biopsies by digesting with collagenase. Based on morphology and immunocytochemical staining, the primary cultures contained two different cell types: epithelial cells with a honeycomb-like morphology, expressing cytokeratin 7 and cells of fibroblastoid spindle-shape morphology, stromal cells, containing CD10. Then, we established immortalized human endometriotic cell line that retained the normal functions and characteristics of the primary cells.

Several methods exist for immortalizing mammalian cells in culture. The most recently discovered approach to cell immortalization is through the expression of telomerase reverse transcriptase protein (TERT), particularly for cells that are most affected by telomere length (e.g., human). This protein is inactive in most somatic cells, but when hTERT is exogenously expressed, the cells are able to maintain sufficient telomere lengths to avoid replicative senescence. Analysis of several telomerase-immortalized cell lines has verified that cells maintain a stable genotype and retain critical phenotypic markers. Through the introduction of an hTERT cDNA, we produced endometrial stromal and epithelial cells with greatly extended life spans. Insertion of hTERT resulted in reconstitution of the telomerase activity, elongation of telomere length, and extend life span. Whereas control cells stopped dividing after about 15–20 doublings, the hTERT-expressing endometriial cells have exceeded 80 population doublings and are continuing to divide at normal rates. Recent studies have shown that expression of hTERT proteins produced immortalized human fibroblasts and keratinocytes without transformation to a malignant phenotype (Dickson et al., 2000; Farwell et al., 2000). Consistent with these observations, the immortalized cell lines (epithelial and stromal) demonstrated growth characteristics of normal cells but, unlike the parent cells, did not cease to grow after extended culture time. Occurred immortalization has been verified both empirically and experimentally. In fact, the immortalized cells of both lines have shown resistance to the selection with the antibiotic, other than their primary controls. On the other hand, the experimental confirmation that the cells obtained were actually in continuous culture, was obtained by evaluating the expression of hTERT gene by RT-PCR analysis, that showed the presence of the gene only in the transfected lines and not in controls.

The most important concern about using a cell culture model for molecular and cellular studies of endometriosis is whether these cell lines maintain their in vivo characteristics. First, immortalized cells express appropriate cell-specific cytoskeletal elements: cytokeratin 7 for epithelial cells and CD10 for stromal cells, furthermore, these cells did not differ by microscopic morphology. Next, we have evaluated the presence of molecules also found in endometriotic lesions in vivo that included markers such as estrogen receptor-α and -β, and progesterone receptor. Our results indicate that continuous lines contain estrogen receptor-α and low amounts of estrogen receptor-β while progesterone receptor is more expressed in the stromal lines. Finally, our data also demonstrate a functional estrogen response in these cells; in particular treatment of immortalized epithelial cells with 17β-estradiol (E2) or 17α-ethynyl estradiol, induced cell proliferation greater than in the primary controls. Regarding stromal lines, treatment with the same hormones produced a less marked response and more slowly. In the final analysis, morphological, cytogenetic and functional analyses showed a perfect overlap between the primary and continuous lines.

In conclusion, in this work we have created a valid and appropriate model of experimental study that can be used to evaluate the complex molecular and genetic mechanisms underlying endometriosis and, not least, the evaluation of effects of molecules that can act on therapeutic targets.
REFERENCES


Dickson MA, Hahn WC, Ino Y, Ronfard V, Wu JY, Weinberg RA, Louis DN, Li FP, Rhinwald JG. 2000. Human keratinocytes that express hTERT and also bypass a p16 (INK4a)-enforced mechanism that limits life span become

Fig. 8. Responsiveness of epithelial (A) and stromal (B) cells to two-steroid hormones. Primary and immortalized cells of both lines were seeded, cultured in media with charcoal-treated serum for 48 h, and stimulated with vehicle alone (Ctrl) or with 17β-estradiol (E2) or 17α-ethynyl estradiol (17α) for 48 h at 10 nM. MTT proliferation assay were then performed. Results are the average of four wells in each sample.

JOURNAL OF CELLULAR BIOCHEMISTRY
Immortalized Endometriotic Cells


Slater M, Quagliotto G, Cooper M, Murphy CR. 2005. Endometriotic cells exhibit metaplastic change and oxidative DNA damage as well as decreased function, compared to normal endometrium. J Mol Histol 36:257–263.


USING E-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION

Required Software

Adobe Acrobat Professional or Acrobat Reader (version 7.0 or above) is required to e-annotate PDFs. Acrobat 8 Reader is a free download: http://www.adobe.com/products/acrobat/readstep2.html. For help with system requirements, go to: http://www.adobe.com/support/.

Once you have Acrobat Reader on your PC and open the proof, you will see the Commenting Toolbar (if it does not appear automatically go to Tools>Commenting<Commenting Toolbar). If these options are not available in your Adobe Reader menus then it is possible that your Adobe version is lower than 7 or the PDF has not been prepared properly.

PDF Annotations (Adobe Reader version 7 or 8) – Commenting Toolbars look like this:

![Commenting Toolbar](PC, Adobe version 7)

![Comment & Markup](PC, Adobe version 8, right-click on title bar (Comment & Markup) to show additional icons)

![Commenting](Mac)

PDF Annotations (Adobe Reader version 9)

If you experience problems annotating files in Adobe Acrobat Reader 9 then you may need to change a preference setting in order to edit.

The default for the Commenting toolbar is set to ‘off’ in version 9. To change this setting select ‘Edit | Preferences’, then ‘Documents’ (at left under ‘Categories’), then select the option ‘Never’ for ‘PDF/A View Mode’. (the Commenting toolbar is the same as in version 8).
TO INDICATE INSERT, REPLACE, OR REMOVE TEXT

- **Insert text**

Click the ‘Text Edits’ button on the Commenting toolbar. Click to set the cursor location in the text and simply start typing. The text will appear in a commenting box. You may also cut-and-paste text from another file into the commenting box. Close the box by clicking on ‘x’ in the top right-hand corner. It can be deleted by right clicking (for the PC, ctrl-click on the Mac) on it and selecting ‘Delete’.

- **Replace text**

Click the ‘Text Edits’ button on the Commenting toolbar. To highlight the text to be replaced, click and drag the cursor over the text. Then simply type in the replacement text. The replacement text will appear in a commenting box. You may also cut-and-paste text from another file into this box. To replace formatted text (an equation for example) please Attach a file (see below).

- **Remove text**

Click the ‘Text Edits’ button on the Commenting toolbar. Click and drag over the text to be deleted. Then press the delete button on your keyboard. The text to be deleted will then be struck through.

**HIGHLIGHT TEXT/MAKE A COMMENT**

Click on the ‘Highlight’ button on the commenting toolbar. Click and drag over the text. To make a comment, double click on the highlighted text and simply start typing.

**ATTACH A FILE**

Click on the ‘Attach a file’ button on the commenting toolbar. Click on the figure, table or formatted text to be replaced. A window will automatically open allowing you to attach a file. To make a comment, go to ‘General’ and then ‘Description’ in the ‘Properties’ window. A graphic will appear indicating the insertion of a file.

**LEAVE A NOTE/COMMENT**

Click on the ‘Note Tool’ button on the commenting toolbar. Click to set the location of the note on the document and simply start typing. Do not use this feature to make text edits.

**REVIEW**

To review your changes, click on the ‘Show’ button on the commenting toolbar. Choose ‘Show Comments List’. Navigate by clicking on a correction in the list. Alternatively, double click on any mark-up to open the commenting box.

**UNDO/DELETE CHANGE**

To undo any changes made, use the right click button on your mouse (for PCs, Ctrl-Click for Mac). Alternatively click on the ‘Edit’ in the main Adobe menu and then ‘Undo’. You can also delete edits using the right click (Ctrl-Click on the Mac) and selecting ‘Delete’.

**SEND YOUR ANNOTATED PDF FILE BACK TO WILEY VIA jcbprod@wiley.com**

Save the annotations to your file and return as an e-mail. Before returning, please ensure you have answered any questions raised on the Query form that you have inserted all the corrections: later inclusion of any subsequent corrections cannot be guaranteed.

**Note:** Comprehensive instructions are provided within your PDF file: to access these instructions please click on the Comments and Markup menu in the main tool bar, or click on Help.
COLOR REPRODUCTION IN YOUR ARTICLE

These proofs have been typeset using figure files transmitted to production when this article was accepted for publication. Please review all figures and note your approval with your submitted proof corrections. You may contact the journal production team at JCBprod@wiley.com if you wish to discuss specific concerns.

Because of the high cost of color printing, we can only print figures in color if authors cover the expense. If you have submitted color figures, please indicate your consent to cover the cost on the table listed below by marking the box corresponding to the approved cost on the table. The rate for this journal is $500 USD per printed page of color, regardless on the number of figures appearing on that page.

Please note, all color images will be reproduced online in Wiley InterScience at no charge, whether or not you opt for color printing.

You will be invoiced for color charges once the article has been published in print.

Failure to return this form with your article proofs may delay the publication of your article.

<table>
<thead>
<tr>
<th>JOURNAL OF CELLULAR BIOCHEMISTRY</th>
<th>MS. NO.</th>
<th>NO. COLOR PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANUSCRIPT TITLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTHOR(S)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Color Pages</th>
<th>Color Charge</th>
<th>No.</th>
<th>Color Pages</th>
<th>Color Charge</th>
<th>No.</th>
<th>Color Pages</th>
<th>Color Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>$500</td>
<td>5</td>
<td></td>
<td>$2500</td>
<td>9</td>
<td></td>
<td>$4500</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>$1000</td>
<td>6</td>
<td></td>
<td>$3000</td>
<td>10</td>
<td></td>
<td>$5000</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>$1500</td>
<td>7</td>
<td></td>
<td>$3500</td>
<td>11</td>
<td></td>
<td>$5500</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>$2000</td>
<td>8</td>
<td></td>
<td>$4000</td>
<td>12</td>
<td></td>
<td>$6000</td>
</tr>
</tbody>
</table>

***Contact JCBprod@wiley.com for a quote if you have more than 12 pages of color***

☐ Please print my figures color
☐ Please print my figures in black and white

☐ Please print the following figures in color

and convert these figures to black and white

Approved by ____________________________

Billing Address ____________________________ E-mail ____________________________
Telephone ____________________________ Fax ____________________________
Additional reprint and journal issue purchases

Should you wish to purchase additional copies of your article, please click on the link and follow the instructions provided: https://caesar.sheridan.com/reprints/redir.php?pub=10089&acro=JCB

Corresponding authors are invited to inform their co-authors of the reprint options available.

Please note that regardless of the form in which they are acquired, reprints should not be resold, nor further disseminated in electronic form, nor deployed in part or in whole in any marketing, promotional or educational contexts without authorization from Wiley. Permissions requests should be directed to mailto: permissionsus@wiley.com

For information about ‘Pay-Per-View and Article Select’ click on the following link: http://wileyonlinelibrary.com/ppv
COPYRIGHT TRANSFER AGREEMENT

Date: __________________________ Contributor name: __________________________

Contributor address: ___________________________________________________________

Manuscript number (Editorial office only): __________________________________________

Re: Manuscript entitled ____________________________________________________________

for publication in ____________________________________________________________________ (the “Contribution”)

published by ________________________________________________________________________ (“Wiley-Blackwell”).

Dear Contributor(s):

Thank you for submitting your Contribution for publication. In order to expedite the editing and publishing process and enable Wiley-Blackwell to disseminate your Contribution to the fullest extent, we need to have this Copyright Transfer Agreement signed and returned as directed in the Journal’s instructions for authors as soon as possible. If the Contribution is not accepted for publication, or if the Contribution is subsequently rejected, this Agreement shall be null and void. Publication cannot proceed without a signed copy of this Agreement.

A. COPYRIGHT

1. The Contributor assigns to Wiley-Blackwell, during the full term of copyright and any extensions or renewals, all copyright in and to the Contribution, and all rights therein, including but not limited to the right to publish, republish, transmit, sell, distribute and otherwise use the Contribution in whole or in part in electronic and print editions of the Journal and in derivative works throughout the world, in all languages and in all media of expression now known or later developed, and to license or permit others to do so.

2. Reproduction, posting, transmission or other distribution or use of the final Contribution in whole or in part in any medium by the Contributor as permitted by this Agreement requires a citation to the Journal and an appropriate credit to Wiley-Blackwell as Publisher, and/or the Society if applicable, suitable in form and content as follows: (Title of Article, Author, Journal Title and Volume/Issue, Copyright © [year], copyright owner as specified in the Journal). Links to the final article on Wiley-Blackwell’s website are encouraged where appropriate.

B. RETAINED RIGHTS

Notwithstanding the above, the Contributor or, if applicable, the Contributor’s Employer, retains all proprietary rights other than copyright, such as patent rights, in any process, procedure or article of manufacture described in the Contribution.

C. PERMITTED USES BY CONTRIBUTOR

1. Submitted Version. Wiley-Blackwell licenses back to the Contributor the following rights with respect to the final published version of the Contribution:

   a. After publication of the final article, the right to self-archive on the Contributor's personal website or in the Contributor's institution's employer's institutional repository or archive. This right extends to both intranets and the Internet. The Contributor may not update the submission version or replace it with the published Contribution. The version posted must contain a legend as follows: This is the pre-print reviewed version of the following article: FULL CITE, which has been published in final form at [Link to final article].

   b. The right to transmit, print and share copies with colleagues.

2. Accepted Version. Re-use of the accepted and peer-reviewed (but not final) version of the Contribution shall be by separate agreement with Wiley-Blackwell. Wiley-Blackwell has agreements with certain funding agencies governing reuse of this version. The details of those relationships, and other offerings allowing open web use, are set forth at the following website: http://www.wiley.com/go/funderstatement. NIH grantees should check the box at the bottom of this document.

3. Final Published Version. Wiley-Blackwell hereby licenses back to the Contributor the following rights with respect to the final published version of the Contribution:

   a. Copies for colleagues. The personal right of the Contributor only to send or transmit individual copies of the final published version in any format to colleagues upon their specific request provided no fee is charged, and further-provided that there is no systematic distribution of the Contribution, e.g. posting on a listserve, website or automated delivery.

   b. Re-use in other publications. The right to re-use the final Contribution or parts thereof for any publication authored or edited by the Contributor (excluding journal articles) where such re-used material constitutes less than half of the total material in such publication. In such case, any modifications should be accurately noted.

   c. Teaching duties. The right to include the Contribution in teaching or training duties at the Contributor's institution/place of employment including in course packs, e-reserves, presentation at professional conferences, in-house training, or distance learning. The Contribution may not be used in seminars outside of normal teaching obligations (e.g. commercial seminars). Electronic posting of the final published version in connection with teaching/training at the Contributor's institution/place of employment is permitted subject to the implementation of reasonable access control mechanisms, such as user name and password. Posting the final published version on the open Internet is not permitted.

   d. Oral presentations. The right to make oral presentations based on the Contribution.

4. Article Abstracts, Figures, Tables, Data Sets, Artwork and Selected Text (up to 250 words).

   a. Contributors may re-use unmodified abstracts for any non-commercial purpose. If on-line uses of the abstracts, Wiley-Blackwell encourages but does not require linking back to the final published versions.

   b. Contributors may re-use figures, tables, data sets, artwork, and selected text up to 250 words from their Contributions, provided the following conditions are met:

      (i) Full and accurate credit must be given to the Contribution.

      (ii) Modifications to the figures, tables and data must be noted.

      (iii) The reuse may not be made for direct commercial purposes, or for financial consideration to the Contributor.

      (iv) Nothing herein shall permit dual publication in violation of journal ethical practices.
D. CONTRIBUTIONS OWNED BY EMPLOYER

1. If the Contribution was written by the Contributor in the course of the Contributor's employment, the Contribution is owned by the company/employer which must sign this Agreement (in addition to the Contributor's signature) in the space provided below. In such case, the company/employer hereby assigns to Wiley-Blackwell, during the full term of copyright, all copyright in and to the Contribution for the full term of copyright throughout the world as specified in paragraph A above.

2. In addition to the rights specified as retained in paragraph B above and the rights granted back to the Contributor pursuant to paragraph C above, Wiley-Blackwell hereby grants back, without charge, to such company/employer, its subsidiaries and divisions, the right to make copies of and distribute the final published Contribution internally in print format or electronically on the Company's internal network. Copies so used may not be resold or distributed externally. However, the company/employer may include information and text from the Contribution as part of an information package included with software or other products offered for sale or license or included in patent applications. Posting of the final published Contribution by the institution on a public access website may only be done with Wiley-Blackwell's written permission, and payment of any applicable fee(s). Also, upon payment of Wiley-Blackwell's reprint fee, the institution may distribute print copies of the published Contribution externally.

E. GOVERNMENT CONTRACTS

In the case of a Contribution prepared under U.S. Government contract or grant, the U.S. Government may reproduce, without charge, all or portions of the Contribution and may authorize others to do so, for official U.S. Government purposes only, if the U.S. Government contract or grant so requires. (U.S. Government, U.K. Government, and other government employees: see notes at end)

F. COPYRIGHT NOTICE

The Contributor and the company/employer agree that any and all copies of the final published version of the Contribution or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the Journal as published by Wiley-Blackwell.

G. CONTRIBUTOR'S REPRESENTATIONS

The Contributor represents that the Contribution is the Contributor's original work, all individuals identified as Contributors actually contributed to the Contribution, and all individuals who contributed are included. If the Contribution was prepared jointly, the Contributor agrees to inform the co-Contributors of the terms of this Agreement and to obtain their signature to this Agreement or their written permission to sign on their behalf. The Contribution is submitted only to this Journal and has not been published before. (If excerpts from copyrighted works owned by third parties are included, the Contributor will obtain written permission from the copyright owners for all uses as set forth in Wiley-Blackwell's permissions form or in the Journal's Instructions for Contributors, and show credit to the sources in the Contribution.) The Contributor also warrants that the Contribution contains no libelous or unlawful statements, does not infringe upon the rights (including without limitation the copyright, patent or trademark rights) or the privacy of others, or contain material or instructions that might cause harm or injury.

CHECK ONE BOX:

- Contributor-owned work
  
  Contributor's signature: ________________________________ Date: ________________________________
  
  Type or print name and title: ________________________________

- Company/Institution-owned work (made-for-hire in the course of employment)
  
  Company or Institution (Employer-for-Hire): ________________________________ Date: ________________________________
  
  Authorized signature of Employer: ________________________________ Date: ________________________________

- U.S. Government work
  
  Note to U.S. Government Employees
  A contribution prepared by a U.S. federal government employee as part of the employee's official duties, or which is an official U.S. Government publication, is called a “U.S. Government work,” and is in the public domain in the United States. In such case, the employee may cross out Paragraph A.1 but must sign (in the Contributor's signature line) and return this Agreement. If the Contribution was not prepared as part of the employee's duties or is not an official U.S. Government publication, it is not a U.S. Government work.

- U.K. Government work (Crown Copyright)
  
  Note to U.K. Government Employees
  The rights in a Contribution prepared by an employee of a U.K. government department, agency or other Crown body as part of his/her official duties, or which is an official government publication, belong to the Crown. U.K. government authors should submit a signed declaration form together with this Agreement. The form can be obtained via http://www.opsi.gov.uk/advice/crown-copyright/copyright-guidance/publication-of-articles-written-by-ministers-and-civil-servants.htm

- Other Government work
  
  Note to Non-U.S., Non-U.K. Government Employees
  If your status as a government employee legally prevents you from signing this Agreement, please contact the editorial office.

- NIH Grantees
  
  Note to NIH Grantees
  Pursuant to NIH mandate, Wiley-Blackwell will post the accepted version of Contributions authored by NIH grant-holders to PubMed Central upon acceptance. This accepted version will be made publicly available 12 months after publication. For further information, see www.wiley.com/go/nihmandate.